A free product of finitely generated nilpotent groups amalgamating a cycle that is not subgroup separable

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Knot Groups That Are Not Subgroup Separable

This paper answers a question of Burns, Karrass and Solitar by giving examples of knot and link groups which are not subgroup-separable. For instance, it is shown that the fundamental group of the square knot complement is not subgroup separable. Let L denote the fundamental group of the link consisting of a chain of 4 circles. It is shown that L is not subgroup separable. Furthermore, it is sh...

متن کامل

Isoperimetric Functions of Amalgams of Finitely Generated Nilpotent Groups along a Cyclic Subgroup

We show that amalgams of nitely generated torsionfree nilpotent groups of class c along a cyclic subgroup satisfy a polynomial isoperimetric inequality of degree 4c. The distortion of the amalgamated subgroup is bounded above by a polynomial of degree c. We also give an example of a non-cyclic amalgam of nitely generated torsionfree nilpotent groups along an abelian, isolated and normal subgrou...

متن کامل

Isoperimetric Functions of Finitely Generated Nilpotent Groups

We show that the isoperimetric function of a nitely generated nilpotent group of class c is bounded above by a polynomial of degree 2c.

متن کامل

Dominions in finitely generated nilpotent groups

In the first part, we prove that the dominion (in the sense of Isbell) of a subgroup of a finitely generated nilpotent group is trivial in the category of all nilpotent groups. In the second part, we show that the dominion of a subgroup of a finitely generated nilpotent group of class two is trivial in the category of all metabelian nilpotent groups. Section

متن کامل

Finitely generated nilpotent groups are finitely presented and residually finite

Definition 1. Let G be a group. G is said to be residually finite if the intersection of all normal subgroups of G of finite index in G is trivial. For a survey of results on residual finiteness and related properties, see Mag-nus, Karrass, and Solitar [6, Section 6.5]. We shall present a proof of the following well known theorem, which is important for Kharlampovich [4, 5]. See also O. V. Bele...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1996

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-96-03567-8